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Abstract

Objective

Given the high prevalence and comorbidity of combat-related PTSD and TBI in Veterans, it

is often difficult to disentangle the contributions of each disorder. Examining these patholo-

gies separately may help to understand the neurobiological basis of memory impairment in

PTSD and TBI independently of each other. Thus, we investigated whether a) PTSD and

TBI are characterized by subcortical structural abnormalities by examining diffusion tensor

imaging (DTI) metrics and volume and b) if these abnormalities were specific to PTSD ver-

sus TBI.

Method

We investigated whether individuals with PTSD or TBI display subcortical structural abnor-

malities in memory regions by examining DTI metrics and volume of the hippocampus and

caudate in three groups of Veterans: Veterans with PTSD, Veterans with TBI, and Veterans

with neither PTSD nor TBI (Veteran controls).

Results

While our results demonstrated no macrostructural differences among the groups in these

regions, there were significant alterations in microstructural DTI indices in the caudate for

the PTSD group but not the TBI group compared to Veteran controls.
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Conclusions

The result of increased mean, radial, and axial diffusivity, and decreased fractional anisot-

ropy in the caudate in absence of significant volume atrophy in the PTSD group suggests

the presence of subtle abnormalities evident only at a microstructural level. The caudate is

thought to play a role in the physiopathology of PTSD, and the habit-like behavioral features

of the disorder could be due to striatal-dependent habit learning mechanisms. Thus, DTI

appears to be a vital tool to investigate subcortical pathology, greatly enhancing the ability to

detect subtle brain changes in complex disorders.

Introduction

Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are a common occur-

rence in Veterans. The prevalence of PTSD in Veterans ranges from 10–30% [1, 2] and 15–

30% for TBI [3, 4]. In addition, a common sequelae of both PTSD and TBI are impairments in

memory. The memory systems in the medial temporal lobe and basal ganglia have different

properties. The medial temporal lobe supports declarative memory, which is the conscious rec-

ollection of facts and events, while the basal ganglia support nondeclarative memory, which is

nonconscious and is implicitly learned through performance rather than recollection [5]. Fur-

thermore, it is not well understood how the different memory systems (declarative vs non-

declarative memory) interact in the brain with each other [6, 7], but it is possible that both sys-

tems are involved in the pathology of PTSD and TBI, as summarized below.

In terms of regions underlying the medial temporal lobe and basal ganglia memory systems,

there has been an extensive body of research addressing functional and volumetric abnormali-

ties in PTSD. Studies have shown that PTSD patients tend to perform poorly on declarative

memory tasks compared to controls (for a review see [8]), suggesting a functional impairment

of the hippocampal-dependent declarative memory system. There are also studies demonstrat-

ing reduced hippocampal volume in patients with PTSD [9–11], though this finding is not

consistent [12–14]. Supporting a role of the striatum in PTSD pathology, one study found

reduced [15], while another study [16] found increased blood flow to this region in patients

with PTSD compared to controls. Similarly, the fMRI literature has been mixed. Several fMRI

studies suggest increased activation in the striatum [17, 18], while other studies demonstrated

decreased activation [19, 20].

Similarly, patients with traumatic brain injury (TBI) also display memory impairments that

could be due to structural and functional abnormalities of the hippocampus and striatum.

Neuroimaging and post-mortem neuropathological studies, as well as data from animal mod-

els have shown that the hippocampus is highly susceptible to the effects of TBI [21–24], as well

as the striatum [23, 25–27] (for a review see [28]). Furthermore, studies have found correla-

tions between memory impairment and learning deficits with hippocampal atrophy, striatal

atrophy and decreased activation, and fornix damage in patients with TBI [22, 29–32].

Based upon the evidence presented above, gray matter damage is a relevant feature in PTSD

and TBI. Understanding the neuroanatomical basis of functional abnormalities of memory

requires understanding whether there are any disruptions in macrostructural and microstruc-

tural integrity. While volume is often used to characterize macrostructural integrity, another

modality, diffusion tensor imaging (DTI), is a novel tool that may capture microstructural

abnormalities in PTSD and TBI. DTI is a non-invasive magnetic resonance imaging technique
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that provides information about the microstructural architecture in different cerebral tissues

in vivo. DTI measures the random molecular motion of water molecules (i.e. diffusion) by

applying multiple diffusion-encoding gradients in different orientations.

There are four traditional DTI metrics that are calculated. Fractional anisotropy (FA),

which quantifies the directionality of diffusion, is a non-specific biomarker of microstructural

architecture and neuropathology and can be regarded as a summary measure for microstruc-

tural integrity [33]. Mean diffusivity (MD) measures the average diffusion in all directions and

represents isotropic diffusivity, which provides information about changes in the interstitial

space and is sensitive to cellular damage (e.g. edema and necrosis) [33]. More neurobiological

specificity is available from two directional diffusivities: axial diffusivity (AD), which measures

diffusion parallel to the axonal fibers, is correlated with axonal injury [34] or axonal pruning

[35], while radial diffusivity (RD), which measures diffusion perpendicular to the fibers, is

related to myelin injury or decreased myelination [36].

There is cumulating evidence that DTI is a useful tool to detect subtle microscopic brain tis-

sue alterations before neuronal degradation and atrophy are detectable on a macroscopic level

[37, 38]. DTI is traditionally used for characterizing microstructural properties of white matter

tracts, but has recently been employed to detect microstructural abnormalities and overall cel-

lular dysfunction in subcortical gray matter regions [14, 39–49]. The validity of DTI for sub-

cortical gray matter regions is due to the high directionality of diffusion in these deep gray

matter structures [50]. While there have been various studies examining white matter DTI

structural abnormalities in PTSD and TBI [51–53], to our knowledge, there have been no stud-

ies examining gray matter microstructural abnormalities in these patient populations in these

regions.

PTSD and TBI are frequently referred to as the “signature wound” of the Iraq and Afghani-

stan wars. Returning Veterans have higher incidences of comorbid PTSD and TBI, as well as

other psychiatric illness such as depression [54–56]. However, in terms of gray matter abnor-

malities in individuals with comorbid PTSD and TBI, the literature is inconsistent. One study

[57] found a decrease in cortical thickness, while other studies have not found significant

changes in gray matter [58](for a review see [28]). While it is important to look at comorbid

conditions, understanding the two separately provides unique insights that can help in target-

ing treatments with varying degrees of each condition. Examining these pathologies separately

may help to understand the neurobiological basis of PTSD and TBI independently of each

other. Since both PTSD and TBI are associated with impairments across several domains of

memory, we wanted to investigate the neural basis of both of these systems, choosing represen-

tative regions in these memory systems due to their role in cognition, (i.e., the hippocampus

and caudate). Thus, we investigated whether a) PTSD and TBI are characterized by subcortical

structural abnormalities by examining gray matter DTI metrics and gray matter volume of the

hippocampus and caudate and b) if these abnormalities were specific to PTSD versus TBI. In

order to investigate these aims, we examined three groups of Veterans: Veterans with PTSD,

Veterans with TBI, and Veterans with neither PTSD nor TBI (Veteran controls; VC).

Materials and Methods

Participants

Eighty-nine Veterans were seen at the War Related Illness and Injury Study Center (WRIISC

CA), Veterans Affairs Palo Alto Health Care System (VAPAHCS), a tertiary care clinic that pro-

vides clinical evaluations for Veterans with deployment-related health concerns. Veterans referred

to the WRIISCs often have one or more of the following presentations: (1) deployment-related

health conditions, (2) complex health conditions with no known cause (medically unexplained
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symptoms), and (3) chronic multi-symptom illness. We examined a sample of 25 Veterans with

PTSD (mean age: 47.68; SD: 11.74), 33 Veterans with TBI (mean age: 48.70; SD: 9.48), and 31 Vet-

erans without PTSD or TBI (mean age: 45.03, SD: 10.73) (Table 1). Drug information about the

participants was not available. All aspects of the study were approved by the Stanford University

and VAPAHCS Institutional Review Board, and written informed consent to analyze clinical data

was obtained from all participants.

Clinical measures and evaluations

The Clinician Administered PTSD Scale (CAPS) [59] was used to assess PTSD symptoms.

PTSD status was assigned a binary score (no or yes). The CAPS is considered the “gold stan-

dard” for the assessment of PTSD and has very good psychometric properties across a wide

variety of clinical populations and research settings [60]. Only Veterans who met the criteria

for PTSD and without a history of TBI were included in the PTSD only group. An exam by a

neurologist or a review of patient records was used to determine TBI status. TBI status and

severity was determined according to DoD/DVA criteria assessing Alteration of Conscious-

ness (AOC), Loss of Consciousness (LOC), and Post-traumatic amnesia (PTA) [61]. Veterans

with mild to moderate TBI were included in the TBI only group (four out of the 33 individuals

in the TBI group had a moderate TBI). No individuals with severe TBI were included in our

analysis, as these patients are rarely referred to our clinic.

Cognitive assessment

Each Veteran received a cognitive screening battery as part of a comprehensive medical evalu-

ation. Estimated premorbid intellectual functioning (eFSIQ) was based on a reading recogni-

tion measure, the Wechsler Test of Adult Reading (WTAR; [62]). Executive functioning

abilities assessed included attention and working memory for auditorily presented numbers

(Wechsler Adults Intelligence Scale–Fourth Edition Digit Span subtest; [63]), and processing

speed, attention, and set-shifting (Trails A & B; [64]). The Repeatable Battery for the Assess-

ment of Neuropsychological Status (RBANS; [65]) assessed general cognitive functioning. The

RBANS is composed of five composite summary indexes: immediate memory, visuospatial/

constructional, attention, language, and delayed memory. Examination of Veteran memory

performance was based on immediate and delayed memory index values, along with the indi-

vidual subtests comprising each index: list learning, list recall, figure recall, story learning, and

story recall.

Table 1. Participant demographics.

Demographics Veterans with PTSD (N = 25) Veterans with TBI (N = 33) Veterans without PTSD or TBI (N = 31)

Age (years) 47.68 ± 11.74 (29–70) 48.70 ± 9.48 (28–67) 45.03 ± 10.73 (30–71)

Gender (male/female) 20/5 31/2 29/2

Education (years) 13.08 ± 2.40* (6–18) 14.82 ± 2.27 (11–22) 14.52 ± 2.47 (12–21)

Handedness (left/right/both) 1/20/4*§ 0/33/0 3/28/0

Deployment (yes/no) 25/0 26/7ǂ 31/0

Demographics of Veterans with PTSD, with TBI, and without TBI or PTSD (VC). The table displays the mean, standard deviation, range, and count when

appropriate.

* p < 0.05, PTSD < TBI.

§ p < 0.05, PTSD < VC.

ǂ p < 0.05, TBI > PTSD & TBI > VC.

doi:10.1371/journal.pone.0170564.t001
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MRI acquisition

Clinical neuroimaging was conducted at the Veterans Affairs Palo Alto Health Care System

(VAPAHCS) using a 3T GE Discovery MR750 scanner with an eight channel, GE head coil.

High-resolution T1-weighted images were acquired using a three-dimensional spoiled-gradi-

ent recalled acquisition (3D-SPGR) in steady state (272 axial slices, repetition time = 7.3 ms;

echo time = 3.0 ms; flip angle = 11˚; field of view = 250 mm; slice thickness = 1.2 mm with 0.6

between slices; acquisition matrix = 256 × 256; number of excitations = 1.0; voxel dimensions:

1.05 mm × 1.05 mm × 0.60 mm). DTI images were acquired through Array Spatial Sensitivity

Encoding (ASSET) Echo Planar Imaging (EPI), slice thickness = 2.0 mm, TR = 6600, TE = 84,

in-plane-resolution = 0.94 x 0.94 mm, Flip Angle = 90˚, NEX = 1, 30 diffusion-encoding direc-

tions at b = 1000 s/mm2, 5 acquisitions at b = 0. This sequence was acquired twice to improve

signal-to-noise. The images were read by a neuroradiologist in the weekly WRIISC consensus

conference comprised of clinical psychologists, neurologists, nurses, psychiatrists, and a social

worker.

Volumetric processing and analysis

Automated volumetric segmentation was performed using the FMRIB’s Integrated Registra-

tion and Segmentation Tool (FIRST) as implemented in FSL [66]. First, each subject’s T1

image was spatially transformed to the MNI 152 standard space using 12 degrees of freedom

affine registration as implemented in FLIRT. After subcortical registration, a sub-cortical

mask is applied, to locate the different subcortical structures, followed by segmentation based

on shape models and voxel intensities. Absolute volumes of subcortical structures are calcu-

lated. In order to calculate normalized volumes, FSL’s SIENAX was run [67, 68]. SIENAX

starts by extracting brain and skull images from the single whole-head input data [69]. The

brain image is then affine-registered to MNI152 space using the skull image to determine the

registration scaling [70, 71]. The volumetric scaling factor to be used as normalization for head

size is derived from the normalization matrix. All normalized volumes for the hippocampus

and caudate are reported.

DTI processing and analysis

Data processing was conducted using (FMRIB) Software Library (FSL) version 5.0.8 and

FMRIB’s Diffusion Toolbox (FDT) [72]. Head motion and eddy current induced distortions

were corrected through affine registration of the diffusion-weighted images to the first B0

image. Motion artifacts were inspected and subjects with greater than 3mm of movement were

excluded (2 VC subjects). The gradient directions were corrected according to the rotation

parameters. Next, non-brain tissue was removed using the Brain Extraction Tool (BET) [69].

The DTIFIT tool was then used to fit a diffusion tensor model to the raw diffusion data at each

voxel to get DTI derived metrics (i.e. FA, MD, RD, and AD), fitting the model with weighted

least squares. All subjects’ DTI data were then aligned into a common MNI space using the

nonlinear registration tool FNIRT, which uses a b-spline representation of the registration

warp field [73–75]. Next, based on an a priori hypothesis, two pairs of ROIs derived from sub-

ject-specific masks from FSL’s FIRST tool were nonlinearly aligned into a common MNI

space; these ROIs included the left and right caudate and hippocampus. DTI metrics from

these subject-specific gray matter ROIs were obtained and used in the analysis. Subject-specific

masks rather than standard space atlas masks were used to decrease risk of data contamination

of surrounding CSF and white matter.
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Statistical analyses

Data were analyzed using SPSS (V.21, SPSS, Chicago) and R (www.r-project.org). Normality

for individual variables was determined by the Shapiro-Wilk test. Depending on normality,

variables were analyzed using parametric models or log transformed before running paramet-

ric models. Group differences for demographic data and neuropsychological data were ana-

lyzed using one-way AVOVA with post-hoc bonferroni correction and chi-square tests when

appropriate. Group differences in DTI metrics and volume were analyzed using a univariate

GLM model controlling for education, handedness, and deployment with post-hoc bonferroni

correction. The first group analysis examined the ROIs bilaterally, while the second group

analysis examined the left and right ROIs independently. In order to determine if it was valid

to combine the ROIs a multivariate ANOVA (MANOVA) was run. Because MD is a measure

that provides information about changes in the interstitial space and cellular damage [33], sev-

eral recent studies [14, 39–49] have employed MD to investigate abnormalities in subcortical

gray matter regions. As such, MD was our primary outcome measure. However, we report all

DTI measures and group results for completeness. In order to see if DTI and volume are sensi-

tive to age differences and cognitive measures, correlations between these metrics and age,

MD, and volume collapsed across group were carried out. These correlations controlled for

education, handedness, and deployment.

Results

Demographic group differences

There were no differences in age or gender among Veterans with PTSD, TBI or without PTSD

or TBI. There were differences among the groups for education, F(2, 86) = 4.156, p = 0.019.

Post-hoc analyses applying a Bonferroni correction revealed the PTSD group (M = 13.08,

SD ± 2.40) had less number of years of education than the TBI group (M = 14.82, SD ± 2.27),

p = 0.021. There were no differences in years of education between the PTSD and VC groups,

or for the TBI and VC groups, p’s > 0.05. There was also a significant group difference in

deployment and handedness, X2 (2) = 12.89, p = 0.002 and X2 (4) = 14.217, p = 0.007. For

deployment, the TBI group had a greater number of subjects that were not deployed. For

handedness, the PTSD group had more subjects that were ambidextrous than the other groups

(Table 1).

Cognitive assessment group differences

There were group differences for eFSIQ, F(2,78) = 3.324, p = 0.045. Specifically, WTAR values

suggested higher estimated premorbid intellectual functioning in the VC group as compared

to the PTSD group (p = 0.049). There were no group differences for eFSIQ between the TBI

group and the VC group or with the PTSD group, p’s > 0.05. However, there were differences

in declarative memory measures of list learning raw scores, F(2, 59) = 4.324, p = 0.018, list

recall raw scores, F(2, 59) = 4.303, p = 0.018, and story recall raw scores, F(2, 59) = 4.938,

p = 0.010. For list learning and list recall, post-hoc analyses revealed that the PTSD group per-

formed worse than the VC group, p = 0.033 and p = 0.014 respectively. For story recall, the

PTSD group did worse than the TBI group, p = 0.011 and a trend to do worse than the VC

group, p = 0.069 (Table 2).

DTI group differences

MD. There were group differences in the bilateral caudate, F(5, 83) = 5.350, p = 0.007, for

the PTSD group to have higher MD values than VC, p = 0.005 (Fig 1A). In addition, there
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were differences between the groups in the left caudate, F(5, 83) = 4.610, p = 0.013, and right

caudate, F(5, 83) = 5.205, p = 0.007, for the PTSD group to have higher MD values than VC,

p = 0.010 and p = 0.006 respectively. There were no significant differences for the TBI group,

p’s > 0.05.

FA. There were group differences in the bilateral caudate, F(5, 83) = 3.204, p = 0.046, for

the PTSD group to have lower FA values than VC, p = 0.040 (Fig 1B). There were no other dif-

ferences among the groups for FA.

RD. There were group differences in the bilateral caudate, F(5, 83) = 5.727, p = 0.005, for

the PTSD group to have higher RD values than VC, p = 0.003 (Fig 1C), and a trend for the TBI

group, p = 0.095. In addition, there were differences between the groups in the left caudate, F

(5, 83) = 4.966, p = 0.009, and right caudate, F(5, 83) = 5.481, p = 0.006,for the PTSD group to

have higher RD values than the VC group, p = 0.007 and p = 0.004 respectively. The PTSD

group also had a trend to have higher RD values than the TBI group, p = 0.094, in the right

caudate as well.

AD. There were group differences in the bilateral caudate, F(5, 83) = 4.557, p = 0.013, for

the PTSD group to have higher AD values than VC, p = 0.010 (Fig 1D), and a trend for the TBI

group, p = 0.097. In addition, there were differences between the groups in the left caudate, F

(5, 83) = 3.823, p = 0.026, and right caudate, F(5, 83) = 4.600, p = 0.013, for the PTSD group to

have higher AD values than VC, p = 0.022 and p = 0.010 respectively. There were also differ-

ences between the groups in the right hippocampus, F(5, 83) = 3.581, p = 0.032, for the PTSD

group to have higher AD values than the TBI group, p = 0.041.

There were no other group differences in the hippocampus for any other DTI metric

(Table 3). Furthermore, the pattern of results remained consistent when Veterans who were

not deployed were excluded from the analysis. In addition, normality of the DTI data was

assessed and while the data was not normally distributed, the results of the log transformed

data were consistent with the original analysis.

Volumetric group differences

There were no statistical differences between the groups in volume of the caudate and

hippocampus.

Correlation of age with MD and volume

There was a positive correlation with age and MD in the bilateral caudate and left and right

caudate, p’s < 0.018. There was also a correlation with age and MD in the bilateral hippocam-

pus and left and right hippocampus, p’s < 0.003. However, there was no correlation with age

and volume in the caudate or hippocampus (Fig 2).

Table 2. Participant Cognitive assessment.

Cognitive Assessment Veterans with PTSD (N = 25) Veterans with TBI (N = 33) Veterans without PTSD or TBI (N = 31)

eFSIQ 100.14 ± 10.67§ 105.63 ± 10.10 106.9 ± 8.49

List Learning (raw) 23.9 ± 5.5§ 24.3 ± 4.9 27.83 ± 4.2

List Recall (raw) 3.79 ± 2.8§ 5.10 ± 2.47 6.09 ± 2.33

Story Recall (raw) 7.00 ± 3.02* 9.50 ± 2.01 8.87 ± 2.63

Cognitive assessment of Veterans with PTSD, with TBI, and without TBI or PTSD (VC).

* p < 0.05, PTSD < TBI.

§ p < 0.05, PTSD < VC.

doi:10.1371/journal.pone.0170564.t002
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Correlation of the cognitive assessment with MD and volume

There was a negative correlation with the declarative memory measure of list recall raw score

and MD in the right caudate, p = 0.040. There were also negative correlations with the declara-

tive memory measure of story recall raw scores and MD in the bilateral hippocampus (S1 Fig)

and left and right hippocampus, p’s < 0.034, as well as the right caudate, p = 0.049. In addition,

we found a positive correlation between the declarative memory measure of list learning raw

scores and the volume of the left hippocampus, p = 0.011. There were no other correlations

with the cognitive assessments and volume.

Fig 1. Group differences in MD, FA, RD, and AD. Average MD, FA, RD and AD from the bilateral caudate was

compared between the three groups. The bilateral caudate was anatomically defined from the FSL Harvard-

Oxford atlas in standard MNI space. Differences between the groups emerged for the PTSD group to have (A)

greater MD than the VC group (p = 0.005, (B) lower FA than the VC group (p = 0.040), (C) greater RD than the VC

group (p = 0.003), and (D) greater AD than the VC group (p = 0.010) after controlling for education, handedness,

and deployment. There were no significant differences for the TBI group, p’s > 0.05.

doi:10.1371/journal.pone.0170564.g001

Table 3. Group Differences in DTI Metrics.

DTI Metrics Veterans with PTSD (N = 25) Veterans with TBI (N = 33) Veterans without PTSD or TBI (N = 31)

FA

Bilateral Hippocampus 0.20 ± 0.07 0.19 ± 0.05 0.20 ± 0.04

Left Hippocampus 0.20 ± 0.07 0.19 ± 0.05 0.20 ± 0.03

Right Hippocampus 0.20 ± 0.06 0.19 ± 0.05 0.19 ± 0.04

Bilateral Caudate 0.22 ± 0.02* 0.23 ± 0.04 0.25 ± 0.03

Left Caudate 0.23 ± 0.03 0.24 ± 0.04 0.26 ± 0.03

Right Caudate 0.22 ± 0.02 0.23 ± 0.04 0.24 ± 0.03

MD

Bilateral Hippocampus 0.0011 ± 0.0001 0.0011 ± 0.0001 0.0011 ± 0.0001

Left Hippocampus 0.0011 ± 0.0001 0.0011 ± 0.0001 0.0011 ± 0.0001

Right Hippocampus 0.0011 ± 0.0001 0.0011 ± 0.0001 0.0011 ± 0.0001

Bilateral Caudate 0.0012 ± 0.0003* 0.0011 ± 0.0002 0.0010 ± 0.0002

Left Caudate 0.0012 ± 0.0003* 0.0011 ± 0.0002 0.0010 ± 0.0002

Right Caudate 0.0012 ± 0.0003* 0.0011 ± 0.0002 0.0010 ± 0.0002

RD

Bilateral Hippocampus 0.0010 ± 0.0001 0.0010 ± 0.0001 0.0010 ± 0.0001

Left Hippocampus 0.0010 ± 0.0001 0.0010 ± 0.0001 0.0010 ± 0.0001

Right Hippocampus 0.0010 ± 0.0002 0.0010 ± 0.0001 0.0010 ± 0.0001

Bilateral Caudate 0.0011 ± 0.0003* 0.0010 ± 0.0002 0.0009 ± 0.0002

Left Caudate 0.0010 ± 0.0003* 0.0009 ± 0.0002 0.0009 ± 0.0002

Right Caudate 0.0011 ± 0.0003* 0.0010 ± 0.0002 0.0009 ± 0.0002

AD

Bilateral Hippocampus 0.0013 ± 0.0001 0.0013 ± 0.0001 0.0013 ± 0.0001

Left Hippocampus 0.0013 ± 0.0001 0.0013 ± 0.0001 0.0013 ± 0.0002

Right Hippocampus 0.0014 ± 0.0001§ 0.0013 ± 0.0001 0.0013 ± 0.0001

Bilateral Caudate 0.0014 ± 0.0003* 0.00013 ± 0.002 0.0013 ± 0.0002

Left Caudate 0.0014 ± 0.0003* 0.0013 ± 0.0002 0.0012 ± 0.0002

Right Caudate 0.0014 ± 0.0003* 0.0013 ± 0.0002 0.0013 ± 0.0002

Group differences in DTI metrics of Veterans with PTSD, with TBI, and without TBI or PTSD (VC).

* p < 0.05, PTSD > VC.

§ p < 0.05, PTSD > TBI.

doi:10.1371/journal.pone.0170564.t003
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MANOVA analysis

For all DTI metrics, there were no statistical differences between the ROIs for the left and right

side, p’s > 0.05.

Discussion

This study sought to determine whether the structural integrity among the hippocampus and

caudate differed between Veterans with PTSD, TBI, and neither PTSD nor TBI. Our results

demonstrated no macrostructural differences between the groups in these neuroanatomical

structures. By contrast, we did observe significant alterations in microstructural DTI indices in

the caudate and hippocampus. We found that the PTSD group showed worse integrity across

all DTI metrics than the VC group. This finding is consistent with accumulating evidence that

DTI is a useful tool to detect subtle microscopic brain tissue alterations before neuronal degra-

dation and atrophy are detectable on a macroscopic level [37, 38].

These results provide support for subcortical microstructural abnormalities for PTSD. One

possibility why we did not find results for TBI is that most of our sample consisted of individu-

als with mild TBI, which does limit the generalizability to moderate and severe TBI. While the

majority of TBI reported by individuals fall within the mild range [76], this could be why we

did not find any significant results. Future studies including moderate and severe TBI might

find significant differences in microstructure when compared with PTSD and controls.

Fig 2. Associations between Age, MD, and Volume. Correlations between (A) Age and MD of the bilateral caudate, r(84) = 0.311, p = 0.004, (B) Age

and volume of the bilateral caudate, r(84) = 0.105, p = 0.336, (C) Age and MD of the bilateral hippocampus, r(84) = 0.352, p = 0.001, and (D) Age and

volume of the bilateral hippocampus, r(84) = -0.035, p = 0.748 collapsed across groups and controlling for education, handedness, and deployment.

doi:10.1371/journal.pone.0170564.g002
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The PTSD group also performed worse than the VC and TBI groups on several measures of

episodic memory, a hippocampal-mediated cognitive function, which is consistent with prior

research [77, 78]. In addition, we found a correlation between the episodic memory measure

of list learning with the left volume of the hippocampus across all subjects, suggesting evidence

for this impairment to be reflected in the volumetric structure of the hippocampus, which is

similarly supported by other studies [79, 80]. There was also a relationship between cognitive

impairment in several episodic memory measures and worse gray matter subcortical integrity

in both the caudate and hippocampus, also providing support for microstructural abnormali-

ties in these structures to be related to cognitive impairment.

The result of increased MD, RD, and AD and decreased FA in the caudate in absence of sig-

nificant volume atrophy suggest subtle abnormalities evident only at a microstructural level.

Increased MD may be a marker of a reduced number of cells and increased interstitial space

[33], while increased RD and AD are considered to be indices of myelin and axonal injuries.

The significant correlation with MD and age and lack thereof with volume and age also pro-

vide support for the sensitivity of DTI to capture microscopic brain alterations. We suggest

that our findings of increased caudate MD may reflect cell loss and/or impaired structural

integrity in PTSD but not TBI.

There are several theories that could support the role of the caudate in the pathophysiology

of PTSD in the habit-like behavioral features of the disorder. Goodman and colleagues [81]

propose a cognitive neuroscience framework for the modulation of multiple memory systems

in PTSD. Their framework postulates that certain symptoms of PTSD, such as flashbacks and

reactivity to cues, could be due to the interactions between the different memory systems

favoring striatal-dependent habit learning mechanisms. S-R learning theory also supports the

role of the caudate in PTSD. S-R learning is dependent on the striatum and is a process by

which a particular behavior is learned due to the association between a stimulus and response

(for a review see [82]). One example of S-R learning in PTSD is the association between cues

(e.g., loud noises, smells, anxiety) during the trauma and the traumatic event. Consequently, in

part due to this learned association, patients with PTSD still respond to the cues in the absence

of a traumatic event. Therefore, in the context of multiple memory systems and S-R learning

theory, our results provide further support for the striatum to underlie some behavioral symp-

toms of PTSD, although other neurobiological models of PTSD also exist [83, 84].

To our knowledge, this is the first study to focus selectively on macrostructural and micro-

structural properties of the hippocampus and striatum in examining PTSD and TBI-related

neuropathology. Nevertheless, there are some limitations. The role of PTSD symptom severity

and its effect on microstructural integrity could not be determined in this study. Another limi-

tation is that there was no cognitive assessment test that was dependent on the striatal-depen-

dent habit memory system; it would be interesting to identify the functional role of striatal

abnormalities in PTSD with respect to cognitive assessment performance in the future. In

addition, this study examined structure and not function, and thus cannot make any claims

about functional impairment. We also did not find any significant group differences for the

TBI group; this could be due to the extreme heterogeneity of the location of injury, type of

impact, TBI severity, time since injury, and age at injury. In future studies, it would be interest-

ing to group patients with TBI into similar cohorts to see if there might be any group differ-

ences. Finally, as we did not have access to any longitudinal data, it would be important to

determine if abnormalities in the caudate are present before or after the stress experience.

In summary, our DTI results and volumetric results from other studies indicate that it is

important to investigate medial temporal lobe and striatal structures in PTSD, which have been

understood as key targets of pathophysiological processes in this disorder. Because volume

reduction in the hippocampus has been found in some studies but not all, and that microscopic
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brain tissue alterations are often detectable before neuronal degradation and atrophy on a mac-

roscopic level, it seems that altered subcortical microstructure, rather than macrostructure, may

be a more consistent hallmark of subcortical pathology in PTSD. Our findings support this

notion. Ultimately, our findings suggest that MD is a more sensitive marker of brain tissue defi-

cits than brain volume, consistent with other reports [37, 48]. Thus, DTI appears to be a valu-

able tool to investigate neuropathology in PTSD, greatly enhancing the ability to detect subtle

brain changes in this complex disorder.

Supporting Information

S1 Fig. Associations between Cognitive Assessment and MD. Negative correlation between

the declarative memory measure of story recall raw scores and MD in the bilateral hippocam-

pus, r(57) = 0.305, p = 0.019 collapsed across groups and controlling for education, handed-

ness, and deployment.

(TIF)

S1 Data. This file contains the raw data for all the analyses in the manuscript.
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